Вторник, 07.07.2020, 22:24
Вы вошли как Гость | Группа "Не зарегистрированный"Приветствую Вас Гость | RSS
Главная | Каталог статей | Мой профиль | Регистрация | Выход | Вход
QO.DO.AM
 >>>мир предметника 050202

Форма входа

Основное меню

Меню 050202

Учительская OnLine

Категории раздела
8 класс-теория [49]
Теоретический материал по Информатики и ИКТ
9 класс [40]
10 класс [34]
11 класс [37]
Лабораторный практикум [23]
Из математической логики
Алексеев Е.Г., Богатырев С.Д. [97]
Алексеев Е.Г., Богатырев С.Д. Информатика. Мультимедийный электронный учебник, содержит: теорию по Информатике и ИКТ, закрепляющие тесты, иллюстративные материалы для урока Информатики и ИКТ
ИНФОРМАТИКА И ИКТ "Учебное пособие" [17]
Содержательный материал по Информатике и ИКТ. Преподается краткое и отборочное содержание для подготовки и проведения уроков Информатики и ИКТ 8-9 классы, 10-11 классы
Технические средства информатизации [31]
Данное учебное пособие предназначено для изучения дисциплины «Технические средства информатизации» в средних специальных учебных заведениях на специальности 2203- «Программное обеспечение вычислительной техники и автоматизированных систем».
Материалы к урокам ИНФОРМАТИКИ И ИКТ для учащихся с 8-11 классы [57]
Переработанный материал по Информатике и ИКТ, блок схемы, выделение основных понятий информатики красочно и кратко, автор разработок Давыдова Елена Владимировна

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
// Your SEO optimized title page contents

Счетчики

Главная » Архив Информатики и ИКТ » Теория » 11 класс [ Добавить статью ]

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Перевод чисел между системами счисления, основания которых являются степенями числа 2 (q = 2n), может производиться по более простым алгоритмам. Такие алгоритмы могут применяться для перевода чисел между двоичной (q = 21), восьмеричной (q = 23) и шестнадцатеричной (q = 24) системами счисления.

Перевод чисел из двоичной системы счисления в восьмеричную. Для записи двоичных чисел используются две цифры, то есть в каждом разряде числа возможны 2 варианта записи. Решаем показательное уравнение:

2 = 2i . Так как 2 = 21, то i = 1 бит.

Каждый разряд двоичного числа содержит 1 бит информации.

Для записи восьмеричных чисел используются восемь цифр, то есть в каждом разряде числа возможны 8 вариантов записи. Решаем показательное уравнение:

8 = 2i . Так как 8 = 23, то i = 3 бита.

Каждый разряд восьмеричного числа содержит 3 бита информации.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то необходимо ее дополнить слева нулями.

Переведем таким способом двоичное число 1010012 в восьмеричное:

101    0012 => 1 × 22 + 0 × 21 + 1 × 20         0 × 22 + 0 × 21 + 1 × 20 => 518.

Для упрощения перевода можно заранее подготовить таблицу преобразования двоичных триад (групп по 3 цифры) в восьмеричные цифры:

Двоичные триады000001010011100101110111
Восьмеричные цифры01234567

Для перевода дробного двоичного числа (правильной дроби) в восьмеричное необходимо разбить его на триады слева направо и, если в последней, правой, группе окажется меньше трех цифр, дополнить ее справа нулями. Далее необходимо триады заменить на восьмеричные числа.

Например, преобразуем дробное двоичное число А2 = 0,1101012 в восьмеричную систему счисления:

Двоичные триады110101
Восьмеричные цифры65

Получаем: А8 = 0,658.

Перевод чисел из двоичной системы счисления в шестнадцатеричную. Для записи шестнадцатеричных чисел используются шестнадцать цифр, то есть в каждом разряде числа возможны 16 вариантов записи. Решаем показательное уравнение:

16 = 2i . Так как 16 = 24, то i = 4 бита.

Каждый разряд шестнадцатеричного числа содержит 4 бита информации.

Таким образом, для перевода целого двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры (тетрады), начиная справа, и, если в последней левой группе окажется меньше четырех цифр, дополнить ее слева нулями. Для перевода дробного двоичного числа (правильной дроби) в шестнадцатеричное необходимо разбить его на тетрады слева направо и, если в последней правой группе окажется меньше четырех цифр, то необходимо дополнить ее справа нулями.

Затем надо преобразовать каждую группу в шестнадцате-ричную цифру, воспользовавшись для этого предварительно составленной таблицей соответствия двоичных тетрад и шестнадцатеричных цифр.

Переведем целое двоичное число А2 = 1010012 в шестнадцатеричное:

Двоичные тетрады00101001
Шестнадцатеричные цифры29

В результате имеем: А16 = 2916.

Переведем дробное двоичное число А2 =0,1101012 в шестнадцатеричную систему счисления:

Двоичные тетрады11010100
Шестнадцатеричные цифрыD4

Получаем: А16 = 0,D416.

Для того чтобы преобразовать любое двоичное число в восьмеричную или шестнадцатеричную системы счисления, необходимо произвести преобразования по рассмотренным выше алгоритмам отдельно для его целой и дробной частей.

Перевод чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную. Для перевода чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную необходимо цифры числа преобразовать в группы двоичных цифр. Для перевода из восьмеричной системы в двоичную каждую цифру числа надо преобразовать в группу из трех двоичных цифр (триаду), а при преобразовании шестнадцатеричного числа - в группу из четырех цифр (тетраду).

Например, преобразуем дробное восьмеричное число А8 = 0,478 в двоичную систему счисления:

Восьмеричные цифры47
Двоичные триады100111

Получаем: А2 = 0,1001112 .

Переведем целое шестнадцатеричное число А16 = АВ16 в двоичную систему счисления:

Шестнадцатеричные цифрыАВ
Двоичные тетрады10101011

В результате имеем: А2 = 101010112



3адания

1.16. Составить таблицу соответствия двоичных тетрад и шестнадцатеричных цифр.

1.17. Перевести в восьмеричную и шестнадцатеричную системы счисления следующие целые числа: 11112, 10101012 .

1.18. Перевести в восьмеричную и шестнадцатеричную системы счисления следующие дробные числа: 0,011112, 0,101010112 .

1.19. Перевести в восьмеричную и шестнадцатеричную системы счисления следующие числа: 11,012, 110,1012 .

1.20. Перевести в двоичную систему счисления следующие числа: 46,278, ЕF,1216 .

1.21. Сравнить числа, выраженные в различных системах счисления: 11012 и D16; 0,111112 и 0,228; 35,638 и 16,С16.


Категория: 11 класс | Добавил: metalworker (23.02.2013)
Просмотров: 3903
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]


qo.do.am © 2020