Пятница, 03.01.2025, 03:25
Вы вошли как Гость | Группа "Не зарегистрированный"Приветствую Вас Гость | RSS
Главная | Каталог статей | Мой профиль | Регистрация | Выход | Вход
QO.DO.AM
 >>>мир предметника 050202

Форма входа

Основное меню

Меню 050202

Учительская OnLine

Категории раздела
8 класс-теория [49]
Теоретический материал по Информатики и ИКТ
9 класс [40]
10 класс [34]
11 класс [37]
Лабораторный практикум [23]
Из математической логики
Алексеев Е.Г., Богатырев С.Д. [97]
Алексеев Е.Г., Богатырев С.Д. Информатика. Мультимедийный электронный учебник, содержит: теорию по Информатике и ИКТ, закрепляющие тесты, иллюстративные материалы для урока Информатики и ИКТ
ИНФОРМАТИКА И ИКТ "Учебное пособие" [17]
Содержательный материал по Информатике и ИКТ. Преподается краткое и отборочное содержание для подготовки и проведения уроков Информатики и ИКТ 8-9 классы, 10-11 классы
Технические средства информатизации [31]
Данное учебное пособие предназначено для изучения дисциплины «Технические средства информатизации» в средних специальных учебных заведениях на специальности 2203- «Программное обеспечение вычислительной техники и автоматизированных систем».
Материалы к урокам ИНФОРМАТИКИ И ИКТ для учащихся с 8-11 классы [57]
Переработанный материал по Информатике и ИКТ, блок схемы, выделение основных понятий информатики красочно и кратко, автор разработок Давыдова Елена Владимировна

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
// Your SEO optimized title page contents

Счетчики
Рейтинг@Mail.ru

Главная » Архив Информатики и ИКТ » Теория » Лабораторный практикум [ Добавить статью ]

Интервальный вариационный ряд

Если изучаемая случайная величина является непрерывной, то ранжирование и группировка наблюдаемых значений зачастую не позволяют выделить характерные черты варьирования ее значений. Это объясняется тем, что отдельные значения случайной величины могут как угодно мало отличаться друг от друга и поэтому в совокупности наблюдаемых данных одинаковые значения величины могут встречаться редко, а частоты вариантов мало отличаются друг от друга.

Нецелесообразно также построение дискретного ряда для дискретной случайной величины, число возможных значений которой велико. В подобных случаях следует строить интервальный вариационный ряд распределения.

Для построения такого ряда весь интервал варьирования наблюдаемых значений случайной величины разбивают на ряд частичных интервалов и подсчитывают частоту попадания значений величины в каждый частичный интервал.

Интервальным вариационным рядом называют упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами или относительными частотами попаданий в каждый из них значений величины.

Для построения интервального ряда необходимо:

  1. определить величину частичных интервалов;
  2. определить ширину интервалов;
  3. установить для каждого интервала его верхнюю и нижнюю границы;
  4. сгруппировать результаты наблюдении.

1. Вопрос о выборе числа и ширины интервалов группировки приходится решать в каждом конкретном случае исходя из целей исследования, объема выборки и степени варьирования признака в выборке.

Приблизительно число интервалов k можно оценить исходя только из объема выборки n одним из следующих способов:

  • по формуле Стержесаk = 1 + 3,32·lg n;
  • с помощью таблицы 1.


Таблица 1

Объем выборки, n

25-40

40-60

60-100

100-200

Больше 200

Число интервалов, k

5-6

6-8

7-10

8-12

10-15

2. Обычно предпочтительны интервалы одинаковой ширины. Для определения ширины интервалов h вычисляют:

  • размах варьирования R - значений выборки: R = xmax - xmin,

    где xmax и xmin - максимальная и минимальная варианты выборки;



  • ширину каждого из интервалов h определяют по следующей формуле: h = R/k.

3Нижняя граница первого интервала xh1 выбирается так, чтобы минимальная варианта выборки xmin попадала примерно в середину этого интервала: xh1 = xmin - 0,5·h .

Промежуточные интервалы получают прибавляя к концу предыдущего интервала длину частичного интервала h:

xhi = xhi-1 +h .

Построение шкалы интервалов на основе вычисления границ интервалов продолжается до тех пор, пока величина xhi удовлетворяет соотношению:

xhi < xmax + 0,5·h .

4. В соответствии со шкалой интервалов производится группирование значений признака - для каждого частичного интервала вычисляется сумма частот niвариант, попавших в i-й интервал. При этом в интервал включают значения случайной величины, большие или равные нижней границе и меньшие верхней границы интервала.



Источник: http://qo.do.am
Категория: Лабораторный практикум | Добавил: metalworker (14.03.2013)
Просмотров: 1879 | Теги: qo.do.am
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]


qo.do.am © 2025