Воскресенье, 22.12.2024, 17:29
Вы вошли как Гость | Группа "Не зарегистрированный"Приветствую Вас Гость | RSS
Главная | Каталог статей | Мой профиль | Регистрация | Выход | Вход
QO.DO.AM
 >>>мир предметника 050202

Форма входа

Основное меню

Меню 050202

Учительская OnLine

Категории раздела
8 класс-теория [49]
Теоретический материал по Информатики и ИКТ
9 класс [40]
10 класс [34]
11 класс [37]
Лабораторный практикум [23]
Из математической логики
Алексеев Е.Г., Богатырев С.Д. [97]
Алексеев Е.Г., Богатырев С.Д. Информатика. Мультимедийный электронный учебник, содержит: теорию по Информатике и ИКТ, закрепляющие тесты, иллюстративные материалы для урока Информатики и ИКТ
ИНФОРМАТИКА И ИКТ "Учебное пособие" [17]
Содержательный материал по Информатике и ИКТ. Преподается краткое и отборочное содержание для подготовки и проведения уроков Информатики и ИКТ 8-9 классы, 10-11 классы
Технические средства информатизации [31]
Данное учебное пособие предназначено для изучения дисциплины «Технические средства информатизации» в средних специальных учебных заведениях на специальности 2203- «Программное обеспечение вычислительной техники и автоматизированных систем».
Материалы к урокам ИНФОРМАТИКИ И ИКТ для учащихся с 8-11 классы [57]
Переработанный материал по Информатике и ИКТ, блок схемы, выделение основных понятий информатики красочно и кратко, автор разработок Давыдова Елена Владимировна

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
// Your SEO optimized title page contents

Счетчики

Главная » Архив Информатики и ИКТ » Теория » Лабораторный практикум [ Добавить статью ]

Построение таблиц истинности и логических функций
    Логическая функция - это функция, в которой переменные принимают только два значения: логическая единица или логический ноль. Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют булевой функцией суждений f (a, b).

Любая логическая функция может быть задана с помощью таблицы истинности, в левой части которой записывается набор аргументов, а в правой части - соответствующие значения логической функции. При построении таблицы истинности необходимо учитывать порядок выполнения логических операций.

Порядок выполнения логических операций в сложном логическом выражении:

  1. инверсия;
  2. конъюнкция;
  3. дизъюнкция;
  4. импликация;
  5. эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

Алгоритм построения таблиц истинности для сложных выражений:

  1. Определить количество строк:

    количество строк = 2n + строка для заголовка,

    n - количество простых высказываний.

  2. Определить количество столбцов:

    количество столбцов = количество переменных + количество логических операций;


    • определить количество переменных (простых выражений);
    • определить количество логических операций и последовательность их выполнения.
  3. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности с учетом таблиц истинности основных логических операций.

Пример: Составить таблицу истинности логического выражения:

D = ¬ А & (B Ú C).

Решение: Ù

  1. Определить количество строк:

    на входе три простых высказывания: А, В, С поэтому n=3 и количество строк = 23 +1 = 9.

  2. Определить количество столбцов:
    • простые выражения (переменные): А, В, С;
    • промежуточные результаты (логические операции): 
      ¬ А - инверсия (обозначим через E); 
      Ú C - операция дизъюнкции (обозначим через F); 
      а также искомое окончательное значение арифметического выражения: 
      D = ¬ А & (B Ú C). т.е. D = E & F - это операция конъюнкции.
  3. Заполнить столбцы с учетом таблиц истинности логических операций.

A

C

E

F

E & F

 0

 0

 0

 1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 1

 0

 1

 1

 1

 0

 1

 1

 1

 1

 1

 1

 0

 0

 0

 0

 0

 1

 0

 1

 0

 1

 0

 1

 1

 0

 0

 1

 0

 1

 1

 1

 0

 1

 0



Построение логической функции по ее таблице истинности:

Попробуем решить обратную задачу. Пусть дана таблица истинности для некоторой логической функции
Z(X,Y):

 X

 Y

 Z

 0

 0

 1

 0

 1

 0

 1

 0

 1

 1

 1

 0

Составить логическую функцию для заданной таблицы истинности.

Правила построения логической функции по ее таблице истинности:

  1. Выделить в таблице истинности те строки, в которых значение функции равно 1.
  2. Выписать искомую формулу в виде дизъюнкции нескольких логических элементов. Число этих элементов равно числу выделенных строк.
  3. Каждый логический элемент в этой дизъюнкции записать в виде конъюнкции аргументов функции.
  4. Если значение какого-либо аргумента функции в соответствующей строке таблице равно 0, то этот аргумент взять с отрицанием.

Решение.

  1. В первой и третьей строках таблицы истинности значение функции равно 1.
  2. Так как строки две, получаем дизъюнкцию двух элементов: ( ) V ( ).
  3. Каждый логический элемент в этой дизъюнкции запишим в виде конъюнкции аргументов функции X и Y(X & Y) V (X & Y).
  4. Берем аргумент с отрицанием если его значение в соответствующей строке таблицы равно 0 и получаем искомую функцию:
    Z (X, Y) =(¬ X & ¬Y) V (X & ¬Y).


Источник: http://qo.do.am
Категория: Лабораторный практикум | Добавил: metalworker (14.03.2013)
Просмотров: 18679 | Теги: qo.do.am
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]


qo.do.am © 2024